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Abstract—This study presents a technique for multi-rotor
unmanned aerial vehicles (UAVs) to efficiently and safely land
in dynamic environments. The aim of this method is to locate
a secure potential landing zone (PLZ) and choose the best
one for landing. The PLZ is initially determined with an area
estimation algorithm, which returns the empty region in the
image where the UAV can possibly land. The obstacle-free
regions that have a higher area than the vehicle’s dimensions
with tolerance are labeled as safe PLZs. In the second phase
of this approach, the velocities of dynamic obstacles moving
towards the PLZs are calculated, and their time to reach
the zones is taken into consideration. The estimated time
of arrival (ETA) of the UAV is calculated, and during the
descent of the UAV, dynamic obstacle avoidance is executed.
A ToF (Time of Flight) sensor is used for detecting altitude,
while a depth camera is used for performing triangulation,
area estimation, and computing distance to the target site.
The approach, tested in real- world environments, has shown
better results compared to existing work as the computation
time is significantly lower, while the accuracy is competitive
with deep learning counterparts.

Index Terms— Safe Landing, Multi-rotor UAVs, Computer
Vision, PLZ Detection, and Dynamic Environments

[. INTRODUCTION

The development of autonomous Unmanned Aerial
Vehicles (UAVs), which can self-navigate in a range of
situations, has been aided by recent advances in artificial
intelligence, control, and remote sensing technologies. The
utilization of UAVs has increased significantly, showing
applications in surveillance and security systems [1], [2],
delivering of products [3], monitoring forest fires [4], motion
and traffic analysis and various other research purposes [5],
[6].

Many studies [7], [8], [9] focus on completely known and
static environments, i.e environments that consist of objects
at fixed locations. Given the application scenarios, there
are missions where UAVs are susceptible to external events
like loss of communication from ground stations, inability
to navigate due to sensor malfunctioning, emergency
landing during search and rescue operations, and weather
disturbances. Hence, in the event of different scenarios, this
could impact the operations, thus leading to the safe landing
of UAVs. Most of the approaches have not considered
highly dynamic environments where numerous obstacles
are randomly moving at different speeds. However, these
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scenarios commonly exist in practice; for instance, many
dynamic obstacles, such as humans and vehicles, may disturb
UAVs during landing at a specific target location initially
identified by the UAVs. Therefore, in these situations, UAVs
must safely land at unstructured locations to reduce damage
to themselves and avoid causing any injury to humans. To
achieve the collision avoidance objective in different dynamic
environments, it is essential for the UAV to track the position
and velocity of the drifting obstacles, choose a region for
landing that has enough area with respect to the size of
the vehicle, and avoid colliding with any dynamic obstacles
around. This is a spatio-temporal prediction-identification
task. However, in most cases, during run-time, UAVs do
not have prior information about the region of the potential
landing area while aborting missions. Dynamic environments
comprise various moving objects at ground level and in
the air that change their positions with respect to time,
considering the three different scenarios, viz., i) Urban, ii)
Rural, and iii) Sub-urban. A considerable amount of research
has been dedicated to detecting landing sites with statically
positioned objects using various computer vision techniques
[10], [11]. Although these methods operate well in some
specific scenarios, it might be challenging to reliably and
properly identify the landing region in more complicated
situations, such as dynamic environments where objects are
in continuous movement.

The main contributions of this paper are listed below:

1) Considering the challenges that UAVs encounter
during the autonomous safe landing, we primarily have
developed a framework to land safely in static and
dynamic environments where any objects in motion
are tracked. According to the author’s knowledge, no
research has been done that specifically addresses this
issue in dynamic circumstances where the scenario
changes with respect to time. The previous related
works in [12], [13] have primarily focused on static
scenarios.

2) Consequently, detecting a reliable potential landing
zone (PLZ) is essential for safe operations. Therefore,
we introduced the architecture given in Fig. 3 for
finding the area of PLZ, and distance of the UAV to the
PLZ. The existing literature estimates the resulting area
of the potential landing zone using computationally
intensive state-of-art deep learning networks. We have
compared our results with existing literature showing
higher accuracy and precision for area identification
with a low computational cost.
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3) Furthermore, we evaluated our proposed approach with
field tests in real-world dynamic environments.

4) An open-source framework for the safe landing of
UAVs in dynamic environments that can be embedded
into any micro-processor for future work is developed.

This paper is organized as follows: Section II describes
the related work for this study. The problem formulation
is discussed in Section III. Section IV covers the proposed
architecture for the autonomous safe landing of UAVs, PLZ
detection, and real-time PLZ state estimation and navigation
in dynamic scenarios. Experiments and real-time results are
described in Section V. Section VI concludes this paper.

II. RELATED WORK

This section has been divided into two parts-Potential
Landing Zone Detection, and Real-time Potential Landing
Zone State Estimation and Navigation in Dynamic Scenarios.
The overview is provided in Fig. 1.

A. Potential Landing Zone Detection

The safe landing of UAVs remains an open problem,
especially in unknown environments [14], [15]. Recent
research has been divided into two categories: a) Sensor-
based detection systems [16], [17], [18], [19], and b) Vision-
based detection systems [20], [21]. The authors in [22]
created a density map for each image using a deep neural
network and obtained a binary occupancy map aiming to
overestimate people’s locations. G. Castellano et al. [23]
proposed a method for identifying safe landing zones using
a lightweight, state-of-the-art CNN network. Meanwhile,
Mukadam et al. [24] employed a more conventional SVM-
based algorithm to detect potential landing zones by
extracting features from colored satellite images.

B. Real-Time Potential Landing Zone State Estimation and
Navigation in Dynamic Scenarios

The authors in [25] proposed a probabilistic graph
approach and developed a cost function for a collision-
free path tested in a simulation environment. C. Lyujie et
al. [26] combined inexpensive sensors like binoculars and
LiDAR for autonomous landing in hostile settings. Various
approaches have been proposed in recent years, including
geometric relations [27], [28], fuzzy logic [29], [30], and
neural networks [31], [32]. The authors in [33] devised an
algorithm for navigating through waypoints and avoiding
obstacles using simplified geometry from a point cloud.
Authors in [34] employed the time-obstacle dynamic map
(TODM) to avoid dynamic obstacles.

In contrast to the aforementioned techniques summarized
in Fig. 1, the approach presented in this paper detects the
potential landing zones and, formulates the path for the UAV,
by tracking the object velocities, and estimated time required
for each object to reach the targeted location. Finally, we
evaluate our framework in the real-world environment.
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Fig. 1: A literature overview reveals existing work in
detection, tracking, and landing categories, with our proposed
research situated at the intersection of these domains.

ITII. PROBLEM FORMULATION

As illustrated in Fig.2, we consider three different
heterogeneous scenarios for UAV navigation: Rural, Urban,
and Sub-urban. The aim of this study is to determine a safe
landing zone (PLZ) and a feasible path for the UAVs to
reach the target spot while avoiding dynamic obstacles. The
three environments are characterized by varying population
densities, road structures, and the presence of moving objects
such as vehicles, people, and other obstacles. (1¢) and (Pz)
represent the target spot and identified PLZ, respectively,
while (Op) represents various dynamic obstacles moving at
different velocities, which in practical environments include
vehicles, humans, and other moving objects. We considered
a situation where dynamic obstacles randomly move in a
straight line within the environment at a prescribed constant
velocity, and the goal of the UAV navigation problem is
to find a potential landing zone and a feasible, collision-
free path from the origin to the target through the cluttered,
moving obstacles.

To gather observations on the surroundings, a variety of
UAV sensors, such as visual cameras, radar, and ultrasonic
rangefinders, are often utilized. Taking into account different
use cases, we employ a depth camera and a time-of-
flight sensor to enable the UAV to detect its surroundings
by measuring the distance between the UAV and its
surroundings and tracking various velocities in real-time
within its frame. As demonstrated, the observation vectors at
time (#) are composed of UAV distance-measuring readings
from various directions as 6; = [d}, d?....., d}'], where 0 < di
< m (m=20, in this case). If d is shorter, the current UAV is
closer to the obstacles in this direction. In contrast, it is safer
if d¢ is larger. Therefore, taking into account the conceptual
understanding, we can locate the PLZ and land safely in
any conditions. a) Rural Scenario: In rural areas, there is
a vast open space with few moving objects and no proper
roads. We calculate the ETA by the UAV and the object that

Authorized licensed use limited to: University of Virginia Libraries. Downloaded on July 23,2025 at 15:47:36 UTC from IEEE Xplore. Restrictions apply.



Camera Field
of
View

o

(a) Rural Scenario

(b) Urban Scenario

(c) Sub-Urban Scenario

Fig. 2: Different types of scenarios considered as a part of which problem is defined.

collides in the line of the identified PLZ, which has been
marked red in Fig. 2a. b) Urban Scenario: As depicted in
Fig. 2b, it represents a city view with tall buildings and a
few static objects [st1, sto, ..., st,,] such as vehicles situated
at positions [7y, 7o, ..., T,]. This case consists of well-defined
roads and footpaths for vehicles and pedestrians, respectively.
Since roads are defined, vehicles move in a straight line, and
UAV identifies PLZ along the roadside only. Generally, in
this case, the UAV is more exposed to pedestrians walking
or standing on the side trails. ¢) Sub-urban Scenario: In the
sub-urban scenario, we assume two different cases; in Case
1, three people are playing cricket, and the ball as an object
is considered within the UAV’s camera field of view. In Case
2, we assume a four-wheeled car moving in a straight line
on a road. Here, the UAV must accurately estimate the speed
and trajectory of the car and keep it within its FOV.

IV. METHODOLOGY

This section has been divided into system overview,
potential landing zone detection, and state estimation and
navigation.

A. System Overview

The overview of the proposed system is presented in Fig.
3. During on-flight the images are captured at 30 FPS with
the help of ZED' depth stereo camera where each frame is
given as an input to the Canny Edge detection algorithm
[35]. Diameter-Area estimation algorithm as described in
Section IV-B is applied on the Canny Edge binary output
image which forms the different possible circles on finding
the empty spot, having no edges and the circle having the
minimum 3 meters sq. area is referred as Potential landing
Zone (PLZ). At the same time, within the input image,
moving objects are detected using the color change in pixels.
For every moving object, its distance to PLZ, and velocity
are calculated and stored. Time taken by the object (7.), and
UAV to reach to nearest PLZ, is taken into consideration.
The estimated time of arrival () of the UAV to reach that
PLZ spot is calculated by translating the pixels into the

1ZED camera specifications and details can be found at the official
Stereolabs website: https://www.stereolabs.com/
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distance in X-axis, and Y-axis, and considering the altitude
in Z-axis. We put on the deciding factor, considering if (7},
- §) is greater than 6 seconds, where 6 = 20 (within this
experiment), that denotes the specific PLZ is cleared for
landing. The auto-land command is initiated as a part of
autopilot mode, the UAV moves to the position in X-axis,
and Y-axis. At the time of descent in Z-axis, the real-time
obstacle avoidance algorithm, divides the present frame into
four quadrants that makes an occupancy grid map [36], where
every quadrant contains the depth matrix of every pixel. The
average depth is taken from the matrix from each quadrant
and is stored in an array. The quadrant with the highest depth
is considered as the emptiest quadrant and the UAV would
descend towards that quadrant. The on-board Time-of-Flight
(ToF) based range measuring sensor, verifies the height
of the UAV, along with the average depth from the depth
camera. If the distance doesn’t match, it means that there’s
an obstacle beyond it, which is the case when UAV will move
to a different location, re-adjusts itself, and descend further
till landing.

B. Potential Landing Zone Detection

As shown in Fig. 4, we divided our method into two
parts to locate the PLZ. In Stage I, just after the UAV takes
off, images are captured with the help of a stereo-depth
camera integrated into the UAV at 30 FPS. As part of
continuous evaluation, the frames are stored in the secure
digital (SD) card embedded in a Jetson Nano. The color
image is first converted to a grayscale image, and then the
grayscale image is subjected to the Canny Edge detection
method using (p) and (v) as the lower and upper thresholds,
respectively. The image’s gradient is used by Canny Edge
detection to locate the edges. The gradient of the image is
determined using a Gaussian filter’s derivative. The binary
output image produced by the Canny Edge detection has
edge pixels designated by 1 and non-edge pixels denoted

by 0.
exp ( )

2The ToF sensor can be found at: https://www.terabee.com/shop/lidar-tof-
range-finders/teraranger-evo-60m/
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Fig. 3: Architecture of the Safe Landing of UAVs. UAV capture frames which are input for the Area Estimation and Core
Module that initiates the auto landing.

Grayscale Image

v

Canny Edge Detection .

Fig. 4: Architecture of potential landing zone detection.
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Egs. 1, 2 show the response of the Gaussian filter in a

single dimension.

Gol(7,y) = 90(2) - 95 (y)

Eq. 3 is a 2-dimensional product of Egs. 1, 2.

In Stage 1I, we apply the diameter-area estimation
algorithm. Clustering is done by applying a Euclidean
distance between the contours. Contours having a distance of
less than 30 pixels are clustered into one set and a polygon
is formed. The shortest distance between two different
polygons is calculated using Eq. 4 which gives the distance
between the two edges (6(u, 1)), where 1 and 1) represents
different sets of the coordinates of edges.

“)

Hence, the distance between the two objects in real-world
(D,), can be found using the Eq. 5 where (v) is the height of
the UAV from the surface, (©) is the distance between two
objects in image, and (f) is the focal length of the camera.
Using Eqgs. 4, 5, we can calculate the non-edge area as shown

in the Eq. 6
_ Oxwv

D, (&)

@
Do

2

C. Real-Time Potential Landing Zone State Estimation and
Navigation in Dynamic Scenarios

Q)

Aprz =7 -

1\3|°@ ~

3) The approach for dynamic scenarios is divided into two
stages. Stage I is a Decision-Making process where images
are captured from the UAV, and each frame is evaluated
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to consider the dynamic motions of objects. To understand
the scenario more precisely, moving objects (O1, Oz, Os,
, Oy,) are detected using color changes in pixels. PLZs
are represented by (%1, to, t3, t4,....., tn). For every PLZ (),
the distance from each object (S1 x, S2,x, S3.x, S4,x,
Sp,x) located on the same axis is calculated using Eq. 4. The
velocity of each object (V1 4, Va2 Va s Vi, Viz) is
calculated based on the number of pixels shifting per second
as shown in Eq. 7. The time taken (7);) by the moving object
(Oy,) to reach its nearest PLZ (t5) is calculated using Eq.
8, where (5, ;) is the distance between the object and target
location, and (V}, ;) is the velocity of an object to reach the
target location.

V, = V;fx v )
S,
T, = V’X (8)

The ETA of the UAV (7}) to the target PLZ is calculated
by translating the pixels into distances using the Eq. 4 in
X-axis, and Y-axis, and with the help of ToF sensor altitude
is calculated in Z-axis. If the absolute value of (T, - Ty)
is greater than (o) seconds, that indicates that the specific
PLZ (t,) is cleared for landing, else the UAV slows down
the speed in order to get the clear landing, while waiting for
the moving objects to pass through the target location.

The Stage II is Navigation. Generally, there are 4
degrees of freedom to control a UAV: pitch, roll, yaw,
and altitude. After the UAV makes the desired decision
to land at a specific PLZ, our navigation algorithm allows
the UAV to be easily controlled by providing them with
the desired navigation position in the X-axis and Y-axis
such that the target PLZ accounts in the center position
of the frame while achieving the desired UAV velocity
using the modern autopilots system, such as Pixhawk?.
Thereby, for simplicity, the inner loop of the control
is ignored and system concentrates on computing the
desired positioning of the UAV. The UAV action vectors
are defined using yaw angles in various directions as
A= [ABLAB?, .., AB] , where 0 < AB{ < 27. The
UAV navigation can be described as

-]

where po = [x¢,y¢] is the UAV position in Cartesian
coordinate system and () is the maximum speed.
Generally, the navigation direction of a UAV cannot be

abruptly changed; therefore, A3 = ‘AB} a-ABl <t

Tyy1 = @y + veos(ABL)

. , 9
Yir1 = ye +vsin(ABL )

= 19
where to i and j represents the (i*") and () actions in
(MAt+1) and (Ay), respectively. Thus, the objective of the
UAV navigation in dynamic scenario can be formulated as

3pixhawk product details can be found at the official Pixhawk website:
https://pixhawk.org/
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. T
min ;o [|Pi1 = Byl
s.t.dpmin > d

po = [ﬂ?o’yo] y PT = [9Ct,yt]

(10)

where (d) is the distance threshold for sustaining with the
security, (po), (pr) represents the initial and end positions
respectively. When the landing of the UAV is initiated, i.e.,
at the time of descent, the real-time obstacle avoidance
algorithm 1is activated, dividing each frame taken from the
depth camera embedded in the UAV into four quadrants
and creating an occupancy map. The occupancy grid map
represents the area as a uniformly spaced grid of binary
random variables, each indicating the presence or absence
of an obstruction within that cell. Occupancy grid methods
generate approximate posterior estimates for these random
variables. Every quadrant of the frame contains the depth
matrix of every pixel. When the distance of the UAV to the
target is large enough compared to the views of two different
cameras, then the angle (6 = ¢), the distance (D1 = D-), and
the distance between the depth camera and the target (L; =
Ls). Hence, using Eq. 11, we can find the depth of a specific
pixel in a quadrant, where H represents the altitude of the
UAV from the plane surface, and D represents the depth of
the pixel.

_H
" cosf

Y

The average depth taken from the matrix from each quadrant
is stored into an array. This generally denotes that the
quadrant having the highest depth is considered as the
quadrant having no obstacle, indicating UAV to descend
towards that specific quadrant. The on-board ToF sensor is
used to verify the altitude of the UAV, along with the depth
from depth camera. If the distance doesn’t match, it means
that there’s an obstacle beyond it, which is the case when
UAV will move to a different location and re-adjust itself
and descend further.

V. EXPERIMENTS AND RESULTS

This section presents the extensive experiments conducted
in real-world environments, and the results have been
evaluated for various use case scenarios. The proposed
framework is tested on an S-500 model quadrotor for the
safe landing of the UAV, as shown in Fig. 5. The quadrotor
is controlled by an onboard Jetson Nano and a Pixhawk
PX4 flight controller, with depth images and altitude range
measurements obtained from the depth camera and ToF
sensor, respectively.

A. Potential Landing Zone Detection

We validated our PLZ detection module in real-world
scenarios. Specifically, we tested the module in Rural, Urban,
and Sub-urban scenarios, as shown in Fig. 6a. The yellow
circles correspond to the identified PLZs, and their resulting
diameters (distances) along with the area occupied can be
visualized in Table I. After identifying the area, the algorithm
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Fig. 5: Quadrotor UAV used in experiments

only considers areas with a value greater than 3 sq. m.
We use a Time-of-Flight (ToF) sensor for obtaining the
ground truth, which has a maximum range of 60 meters. The
average percentage error for our distance and area-estimation
method is recorded as 0.9692% and 1.9427%, respectively.
To the best of our knowledge, we didn’t find any work that
calculates the resulting area for PLZ with UAVs without
state-of-the-art deep learning networks. We also compared
the accuracy to that of Google Earth, which has been listed
as <1% in [37]. It should be noted that, due to the lack of
3D imagery, some diameters used for identifying the area
cannot be measured using Google Earth. We also compared
our area-estimation resulting average percentage error with
the work done by authors that claims for <5% error in [38].

B. Real-Time Potential Landing Zone State Estimation and
Navigation in Dynamic Scenarios

We studied different scenarios, as shown in Fig. 7,
identifying various moving objects in the camera’s field of
view. We validated our algorithm, where we determined the
speeds of the moving objects (vehicles), as shown in Table
II. The ground truth was measured through the vehicles’
odometry. Hence, the results yielded an average percentage
error of 2.37%. To the best of our knowledge, we haven’t
found any work determining speeds using UAVs in dynamic
scenarios. Fig. 8 shows the 3D planned trajectory of the
UAV during landing, while Fig. 9 is a graph between the
distance from the nearest object and time, which shows
the reduction in the distance between the obstacle and the
UAV as it descends in all three different scenarios. Through
this framework, we were able to reduce computation
time by 50% by eliminating any deep learning-based
technologies. Additional details and code can be accessed
at https://github.com/jaskiratsingh2000/
Research-UAVs-Safe-Landings

VI. CONCLUSION

In this study, a large number of strategies that have been
devised to ensure the safe landing of UAVs in dynamic
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environments while taking into account moving objects were
put into practise. Safe landing of UAVs involves estimation of
different safe potential landing zones. Hence, it is important
to estimate the parameters that could identify safe PLZ, and
navigate to land there. In particular, we identify PLZ using
Canny Edge detection, which is further used to calculate
the required area using nearest neighboring contours. Using
diameter-area calculation, we did real-time state estimation
and navigation in dynamic scenarios. We evaluated all our
results on the real-world data, aiming at better approaches
to land safely in dynamic scenarios. Future work includes
considering the estimating the trajectories of the moving
objects, and considering the run-time evaluation while UAV
itself is in dynamic conditions.
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(a) Rural Scenario (b) Urban Scenario (c) Sub-Urban Scenario

Fig. 6: Real-time distance-area estimation through flying UAV for the PLZ in different scenarios

. Estimated Ground Distance Estimated Ground Area Error
Scenarios Reference Distance (m) Truth Error (%) |Area (sq. m) Truth Area (%)
Distance (m) ’ (sq. m)

R1 in Fig. 6a 3.8976 3.9165 0.4826 11.9312 12.0472 0.9629

R2 in Fig. 6a 2.7144 2.71 0.1624 5.7868 5.768 0.3259

Rural R3 in Fig. 6a 5.0808 5.125 0.8624 20.2747 20.629 1.7175

R4 in Fig. 6a 1.0674 1.045 2.1435 0.8948 0.8577 4.3255
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TABLE I: Landing area calculated for different PLZ using Our Method and Ground Truth for Rural, Urban, and Sub-Urban
Scenarios through UAV.

(a) Rural Scenario (b) Urban Scenario (c) Sub-Urban Scenario

Fig. 7: Real-time velocity estimation through flying UAV, estimating time of arrival to reach the target PLZ in different
scenarios
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